Гипергеометрические функции - ορισμός. Τι είναι το Гипергеометрические функции
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Гипергеометрические функции - ορισμός

СЕМЕЙСТВО СПЕЦИАЛЬНЫХ МАТЕМАТИЧЕСКИХ ФУНКЦИЙ
Гипергеометрический ряд; Гипергеометрическое уравнение; Гипергеометрические функции

Гипергеометрические функции         

аналитические функции, определяемые для |z|<1c помощью гипергеометрического ряда (См. Гипергеометрический ряд). Название "Г. ф." было дано Дж. Валлисом (1650). Г. ф. являются интегралами гипергеометрического уравнения

z (1-z)ω" + [γ-(1 + α+ βz]ω'-αβω = 0.

Это уравнение имеет три регулярные особые точки 0, 1 и ∞ и является канонической формой уравнений гипергеометрического типа. Важнейшие специальные функции математического анализа являются интегралами уравнений гипергеометрического типа (например, Шаровые функции) или уравнений, возникающих из гипергеометрических путём слияния их особых точек (например, Цилиндрические функции). Теория уравнений гипергеометрического типа явилась основой для возникновения важной математической дисциплины - аналитической теории дифференциальных уравнений. Между различными Г. ф.

ω = F (α, β; γ; z)

имеется большое число соотношений, например:

F (α, 1; γ, z) = (1-z)-1 F (1, γ -α; γ; z/(z-1)).

Лит.: Уиттекер Э. Т. и Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.

Гипергеометрический ряд         

ряд вида

Г. р. был впервые изучен Л. Эйлером (1778). Разложение многих функций в бесконечные ряды представляет собой частные случаи Г. р. Например:

(1 + z) n = F (-n, β; β; -z),

ln (1 + z) = zF (1, 1; 2; -z),

Г. р. имеет смысл, если γ не равно нулю или целому отрицательному числу; он сходится при |z| < 1. Если, кроме того, γ-α-β >0, то Г. р. сходится и при z = 1. В этом случае справедлива формула Гаусса:

F (α, β; γ; 1) = Γ(γ)Γ(γ-α-β)/Γ(γ-α)Γ(γ-β),

где Г (z) - Гамма-функция. Аналитическая функция, определяемая для |z| < 1 с помощью Г. р., называется гипергеометрической функцией (См. Гипергеометрические функции) и играет важную роль в теории дифференциальных уравнений.

сужение         
Сужение; Расширение функции; Продолжение функции; Сужение и продолжение функции
СУЖ'ЕНИЕ, сужения, мн. нет, ср. Действие и состояние по гл. сузить
-суживать
2 и сузиться
-суживаться
2. Сужение пищевода.

Βικιπαίδεια

Гипергеометрическая функция

Гипергеометри́ческая фу́нкция (функция Гаусса) определяется внутри круга | z | < 1 {\displaystyle |z|<1} как сумма гипергеометрического ряда

F ( a , b ; c ; z ) = 1 + k = 1 [ l = 0 k 1 ( a + l ) ( b + l ) ( 1 + l ) ( c + l ) ] z k = 1 + a b c z 1 ! + a ( a + 1 ) b ( b + 1 ) c ( c + 1 ) z 2 2 ! + a ( a + 1 ) ( a + 2 ) b ( b + 1 ) ( b + 2 ) c ( c + 1 ) ( c + 2 ) z 3 3 ! + , {\displaystyle F(a,b;c;z)=1+\sum _{k=1}^{\infty }\left[\prod _{l=0}^{k-1}{(a+l)(b+l) \over (1+l)(c+l)}\right]z^{k}=1+{\frac {ab}{c}}{\frac {z}{1!}}+{\frac {a(a+1)\cdot b(b+1)}{c(c+1)}}{\frac {z^{2}}{2!}}+{\frac {a(a+1)(a+2)\cdot b(b+1)(b+2)}{c(c+1)(c+2)}}{\frac {z^{3}}{3!}}+\dots ,}

а при | z | > 1 {\displaystyle |z|>1}  — как её аналитическое продолжение. Она является решением линейного обыкновенного дифференциального уравнения (ОДУ) второго порядка z ( 1 z ) d 2 u d z 2 + ( c ( a + b + 1 ) z ) d u d z a b u = 0 , {\displaystyle z(1-z){\frac {d^{2}u}{dz^{2}}}+\left(c-(a+b+1)z\right){\frac {du}{dz}}-ab\,u=0,} называемого гипергеометрическим уравнением.

Τι είναι Гипергеометр<font color="red">и</font>ческие ф<font color="red">у</font>нкции - ορισμός